3.2.19 \(\int \frac {(c-c \sec (e+f x))^{3/2}}{(a+a \sec (e+f x))^{3/2}} \, dx\) [119]

Optimal. Leaf size=98 \[ -\frac {2 c^2 \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2} \sqrt {c-c \sec (e+f x)}}+\frac {c^2 \log (1+\cos (e+f x)) \tan (e+f x)}{a f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

[Out]

-2*c^2*tan(f*x+e)/f/(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(1/2)+c^2*ln(1+cos(f*x+e))*tan(f*x+e)/a/f/(a+a*sec
(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {3993, 3996, 31} \begin {gather*} \frac {c^2 \tan (e+f x) \log (\cos (e+f x)+1)}{a f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {2 c^2 \tan (e+f x)}{f (a \sec (e+f x)+a)^{3/2} \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c - c*Sec[e + f*x])^(3/2)/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

(-2*c^2*Tan[e + f*x])/(f*(a + a*Sec[e + f*x])^(3/2)*Sqrt[c - c*Sec[e + f*x]]) + (c^2*Log[1 + Cos[e + f*x]]*Tan
[e + f*x])/(a*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 3993

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[-4*a^2*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a/c, Int[Sqr
t[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0
] && EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]

Rule 3996

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Dist
[(-a)*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])), Subst[Int[(b + a*x)^(m - 1/2)*((
d + c*x)^(n - 1/2)/x^(m + n)), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &
& EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0]

Rubi steps

\begin {align*} \int \frac {(c-c \sec (e+f x))^{3/2}}{(a+a \sec (e+f x))^{3/2}} \, dx &=-\frac {2 c^2 \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2} \sqrt {c-c \sec (e+f x)}}+\frac {c \int \frac {\sqrt {c-c \sec (e+f x)}}{\sqrt {a+a \sec (e+f x)}} \, dx}{a}\\ &=-\frac {2 c^2 \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2} \sqrt {c-c \sec (e+f x)}}+\frac {\left (c^2 \tan (e+f x)\right ) \text {Subst}\left (\int \frac {1}{a+a x} \, dx,x,\cos (e+f x)\right )}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ &=-\frac {2 c^2 \tan (e+f x)}{f (a+a \sec (e+f x))^{3/2} \sqrt {c-c \sec (e+f x)}}+\frac {c^2 \log (1+\cos (e+f x)) \tan (e+f x)}{a f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.21, size = 114, normalized size = 1.16 \begin {gather*} \frac {i c \cot \left (\frac {1}{2} (e+f x)\right ) \left (2 i+f x+\cos (e+f x) \left (f x+2 i \log \left (1+e^{i (e+f x)}\right )\right )+2 i \log \left (1+e^{i (e+f x)}\right )\right ) \sqrt {c-c \sec (e+f x)}}{a f (1+\cos (e+f x)) \sqrt {a (1+\sec (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c - c*Sec[e + f*x])^(3/2)/(a + a*Sec[e + f*x])^(3/2),x]

[Out]

(I*c*Cot[(e + f*x)/2]*(2*I + f*x + Cos[e + f*x]*(f*x + (2*I)*Log[1 + E^(I*(e + f*x))]) + (2*I)*Log[1 + E^(I*(e
 + f*x))])*Sqrt[c - c*Sec[e + f*x]])/(a*f*(1 + Cos[e + f*x])*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 106, normalized size = 1.08

method result size
default \(-\frac {\left (\cos \left (f x +e \right ) \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+\cos \left (f x +e \right )+\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )-1\right ) \left (\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (f x +e \right )\right ) \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}}{f \sin \left (f x +e \right )^{3} a^{2}}\) \(106\)
risch \(\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, x}{a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}-\frac {2 c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left (f x +e \right )}{a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}-\frac {4 i c \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, {\mathrm e}^{i \left (f x +e \right )}}{a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}-\frac {2 i c \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )}{a \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}\) \(401\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(cos(f*x+e)*ln(2/(cos(f*x+e)+1))+cos(f*x+e)+ln(2/(cos(f*x+e)+1))-1)*(c*(-1+cos(f*x+e))/cos(f*x+e))^(3/2)*
cos(f*x+e)^2*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)/sin(f*x+e)^3/a^2

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 74, normalized size = 0.76 \begin {gather*} \frac {\frac {c^{\frac {3}{2}} \log \left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{\sqrt {-a} a} - \frac {c^{\frac {3}{2}} \sin \left (f x + e\right )^{2}}{\sqrt {-a} a {\left (\cos \left (f x + e\right ) + 1\right )}^{2}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

(c^(3/2)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)/(sqrt(-a)*a) - c^(3/2)*sin(f*x + e)^2/(sqrt(-a)*a*(cos(f
*x + e) + 1)^2))/f

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*sec(f*x + e) + a)*(-c*sec(f*x + e) + c)^(3/2)/(a^2*sec(f*x + e)^2 + 2*a^2*sec(f*x + e) + a^2),
 x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}{\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**(3/2)/(a+a*sec(f*x+e))**(3/2),x)

[Out]

Integral((-c*(sec(e + f*x) - 1))**(3/2)/(a*(sec(e + f*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.47, size = 73, normalized size = 0.74 \begin {gather*} -\frac {\frac {\sqrt {-a c} c^{2} \log \left ({\left | c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + c \right |}\right )}{a^{2} {\left | c \right |}} - \frac {{\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c\right )} \sqrt {-a c} c}{a^{2} {\left | c \right |}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-(sqrt(-a*c)*c^2*log(abs(c*tan(1/2*f*x + 1/2*e)^2 + c))/(a^2*abs(c)) - (c*tan(1/2*f*x + 1/2*e)^2 - c)*sqrt(-a*
c)*c/(a^2*abs(c)))/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/cos(e + f*x))^(3/2)/(a + a/cos(e + f*x))^(3/2),x)

[Out]

int((c - c/cos(e + f*x))^(3/2)/(a + a/cos(e + f*x))^(3/2), x)

________________________________________________________________________________________